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Abstract

When engaging with a textbook, students are inclined to highlight key content. Although students

believe that highlighting and subsequent review of the highlights will further their educational goals, the

psychological literature provides little evidence of benefits. Nonetheless, a student’s choice of text for

highlighting may serve as a window into their mental state—their level of comprehension, grasp of the

key ideas, reading goals, etc. We explore this hypothesis via an experiment in which 400 participants

read three sections from a college-level biology text, briefly reviewed the text, and then took a quiz on the

material. During initial reading, participants were able to highlight words, phrases, and sentences, and

these highlights were displayed along with the complete text during the subsequent review. Consistent

with past research, the amount of highlighted material is unrelated to quiz performance. Nonetheless,

highlighting patterns may allow us to infer reader comprehension and interests. Using multiple repre-

sentations of the highlighting patterns, we built probabilistic models to predict quiz performance and

matrix factorization models to predict what content would be highlighted in one passage from highlights

in other passages. We find that quiz-score prediction accuracy reliably improves with the inclusion of

highlighting data (by about 1-2%), both for held-out students and for held-out student-questions (i.e.,

questions selected randomly for each student), but not for held out questions. Further, an individual’s

highlighting pattern is informative of what they highlight elsewhere. Our long-term goal is to design

digital textbooks that serve not only as conduits of information into the reader’s mind, but also allow us

to draw inferences about the reader at a point where interventions may increase the effectiveness of the

material.
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1 Introduction

Educational data mining is premised on the assumption that we can collect sources of data that will

provide insight into students’ knowledge state—the degree to which they understand and can apply specific

concepts and facts. Typically, such data are first observed when students practice solving problems or take

quizzes. There can be a long lag between the first exposure to new material and observations of students’

performance. For example, in a traditional classroom where students are assigned a reading from a printed

textbook and then take a quiz days later in class, the opportunity to perform prompt interventions has been

lost. With the advent of electronic texts, data can be collected from students during their initial exposure

to unfamiliar reading material, and if knowledge state can be inferred from these data, early interventions

can be performed. To model engagement and comprehension, an obvious source of information is the gaze

pattern of a student reading a textbook (Mills, Graesser, Risko, & D’Mello, 2017). However, reliable gaze

data are quite difficult to collect in a naturalistic setting. Fortunately, explicit behavioral measures are

often available: given students’ proclivity to highlight textbooks (Annis & Kent Davis, 1978; Bell & Limber,

2009; Kornell & Bjork, 2007; Lonka, Lindblom-Ylänne, & Maury, 1994), we can leverage highlights as a data

source to draw inferences about individuals’ attentional and knowledge states.1

Past research has examined the conditions under which highlighting impacts learning and memory. We re-

view this literature in order to motivate the possibility that highlighting might reflect and influence cognitive

states, and therefore be useful in predictive modeling.

1.1 The Utility of Highlighting

Highlighting may benefit a reader for two distinct reasons: first, it may encourage a deeper level of

processing of the material (Craik & Lockhart, 1972); second, it may function as external memory (Faw &

Waller, 1976), also known in the literature as a storage function, which can support subsequent study.

Fowler and Barker (1974) explored depth of processing by asking undergraduates to read articles from

Scientific American in four highlighting conditions: active, in which students highlighted as much content

1Underlining and highlighting are treated as equivalent techniques in the literature. For example, Fowler and Barker (1974)

found no difference between the techniques.
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as they wanted to; passive yoked, in which students read marked texts that had been highlighted by yoked

participants in the active condition; passive expert-based, in which students read marked texts that had been

highlighted by the experimenters to reflect critical material; and control, in which students read articles

without any highlights. The conjecture is that active highlighting might engage semantic analysis to select a

subset of material, whereas passive highlighting would seem to benefit the student only by focusing attention

relative to a condition in which no highlights appeared in the text. Thus, the conditions may affect the

depth of processing that highlights induce.

No difference was found between conditions in overall exam score. However, if the sentences in the text

that are critical for a given test item had been highlighted, that item’s performance benefits significantly.

Specifically, active highlighting yields superior performance on these test items compared to passive-yoked

highlights, and passive expert-based highlighting yields superior performance on these test items compared

to the control condition. These findings provide weak evidence for the hypothesis that active highlighting

engages a deeper level of processing than passive highlighting, which in turn is superior to not highlighting.

To push the depth-of-processing perspective further, one can require students to engage even more sub-

stantively with the material via a constrained active condition in which students are restricted to highlighting

only one sentence per paragraph (Johnson, 1988; Rickards & August, 1975; Wollen, Cone, Britcher, & Min-

demann, 1985). This constraint encourages students to identify the most important idea in a paragraph.

Rickards and August (1975) investigated the difference between three conditions in which participants were

asked to make one highlight per paragraph, either the sentence they deemed most important, least impor-

tant, or any arbitrary sentence. Highlighting the most important sentence yields superior test performance

to highlighting the least important sentence or to not highlight at all. However, students that can highlight

any single sentence without restrictions performed best among all groups and recalled significantly more

incidental material than the group who highlighted the most important sentence per paragraph. The au-

thors argue that the task demand for the group that highlighted the most important sentence per paragraph

may have mitigated against learning the less important material. Nonetheless, imposing a constraint on the

quantity of text highlighted may encourage “active, constructive learning,” (Rickards and August, 1975, p.

865) and thereby boost memory retention.
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By definition, highlighting obviates the need for students to explicitly synthesize and reconstruct content.

Consequently, the generation effect (Slamecka & Graf, 1978) might suggest that highlighting could harm

performance by enabling readers to treat the superficial act of highlighting as sufficient engagement with the

material. However, active highlighting does demand selection and discrimination of content, and thus might

serve as a closer proxy to generation than a pure reading strategy. Consistent with the notion that active

highlighting shares some of the benefits of generation, the effects of each are more potent when students have

some prior knowledge of the material. (For the generation effect, see McNamara, 1995, and Lutz, Briggs,

and Cain, 2003; for highlighting, see Wollen et al., 1985, Blanchard and Mikkelson, 1987, and Klare, Mabry,

and Gustafson, 1955.)

Beyond the depth-of-processing argument, a distinct potential benefit of highlighting is its use as external

memory. Highlighting can been viewed as facilitating the von Restorff effect (Cashen & Leicht, 1970; Fowler

& Barker, 1974; Nist & Hogrebe, 1987; Wallace, 1965; Yue, Storm, Kornell, & Bjork, 2015), wherein the

highlighted items stand out and thus are more memorable. Moreover, the salience of these items make them

easier to review. This phenomenon can be observed in the studies obtaining improved recall for passive

highlighting or experimenter-provided highlights (Cashen & Leicht, 1970; Crouse & Idstein, 1972; Hartley,

Bartlett, & Branthwaite, 1980).

Although highlighting has potential to benefit learners, some analyses find no benefit or detrimental ef-

fects of highlighting. For instance, Peterson (1991) found a disadvantage for inference-based questions when

students highlight, and Dunlosky, Rawson, Marsh, Nathan, and Willingham (2013) argue that highlighting

may be more beneficial for calling attention to individual concepts and facts rather than the connections

among them; however, Ben-Yehudah and Eshet-Alkalai (2018) found a benefit of highlighting for inference-

based as well as fact-based questions. Ben-Yehudah and Eshet-Alkalai (2018) also examined the effect of

presentation medium and found that highlighting improves exam scores relative to a no-highlight control

for print media, but not for digital media. Possibly, depth of processing is limited for digital media due to

demands on motor control to point and highlight with a cursor. Other researchers have argued that high-

lighting is ineffective because students often do not know how to highlight and thus the activity degenerates

to a mechanism for tracking position in the text which requires only superficial processing (Hoon, 1974;
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Idstein & Jenkins, 1972; Nist & Kirby, 1989); this concern may be exacerbated for low-skilled readers who

are less capable of marking important content (Bell & Limber, 2009). It is therefore not entirely surprising

that recent reviews of the literature have reached diverging conclusions about the benefits of highlighting

(contrast Dunlosky et al., 2013, and Miyatsu, Nguyen, and McDaniel, 2018).

1.2 Our Contributions

Nearly all past work has examined highlighting at a condition level, asking whether one variety of high-

lighting yields enhanced student learning over another variety. When an individual student’s specific high-

lights are considered, they are typically cast in terms of summary statistics such as the proportion of sentences

highlighted, the number of main concepts highlighted, the criticality of sentences highlighted (Blanchard &

Mikkelson, 1987; Fowler & Barker, 1974; Idstein & Jenkins, 1972; Johnson, 1988; Nist & Kirby, 1989; Rickards

& August, 1975; Wollen et al., 1985; Yue et al., 2015). In this article, we focus on individual students, asking

whether the specific pattern of highlights that one student makes can predict whether they will learn the

material better than another student with a different pattern of highlights. We thus move from the domain

of cognitive psychology to the domain of data mining.

Past work has also emphasized dependent measures based on overall performance, either recall or the

cloze procedure (Annis & Kent Davis, 1978; Blanchard & Mikkelson, 1987; Cashen & Leicht, 1970; Hartley

et al., 1980; Idstein & Jenkins, 1972; Johnson, 1988; Leutner, Leopold, & Elzen-Rump, 2007; Wollen et al.,

1985). Relatively little research has focused on accuracy on specific questions (Fowler & Barker, 1974; Nist

& Hogrebe, 1987; Peterson, 1991; Yue et al., 2015). In this article, we construct models parameterized for

specific questions and conditioned on the detailed pattern of highlights, offering in principle a finer granularity

of prediction.

The emphasis of past work has been on understanding when highlighting is beneficial and what form of

highlighting is beneficial. Our data-mining perspective suggests that another interesting question to ask is

whether one can predict an individual’s specific pattern of highlights on new material given their previous

highlights. Such predictions might be useful for guiding a student to material that interests them or detecting

when a student is mind wandering by the deviation from their predicted behavior.
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To explore the value of highlights as a data source, we conducted an experiment in which participants

read and highlighted sections of an electronic textbook, reviewed the material with highlights, and then took

a delayed quiz. Observed highlights were used to predict quiz scores using feature-based regression models

that extend item-response theory (Rasch, 1980). The pattern of highlights from two passages was also used

to predict the highlights in a third passage using matrix factorization models from the collaborative filtering

literature (Shi, Larson, & Hanjalic, 2014).

To summarize our results, highlights improve predictions of quiz performance for held-out participants

or held-out participant-questions (i.e., holding out a random subset of questions from each participant), but

not for held-out questions. The predictive power of highlights is modest in magnitude, but highlights do

offer information about the participant’s knowledge state, above and beyond the participant’s mean ability

and a question’s mean difficulty. In exploring various representations of the highlights, we found that coding

them in terms of word primitives, i.e., as a feature vector indicting which words are highlighted, achieves the

best predictions. We also found that an individual’s highlighting pattern informs predictions of what they

would highlight elsewhere.

2 Methodology

Participants read passages from a college-level biology textbook. They later reviewed the passages, and

then took a short quiz generated from factual material from the passages. During initial reading, participants

were allowed to highlight portions of the text (words, phrases, or sentences). During the review phase, these

highlights were displayed inline with the text. To encourage highlighting, participants were informed that

highlights made during the reading phase would be presented along with the full text during the review

phase, and that the review phase would be sufficiently brief that a complete re-reading of the text would not

be feasible.

2.1 Participants

Participants aged 18 and above were recruited from Amazon Mechanical Turk. A total of 400 people

completed the experiment and were paid $3.60. Data from nine participants was discarded. The experiment
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took 25-30 minutes to complete. To incentivize participants, they were told that they would be entered into

a raffle for a bonus prize of $15.00, with the number of entries equal to the number of correct responses to

the quiz questions.

After testing 198 participants, we became concerned that some minor details of the experiment might be

influencing results. Thus, we tested the next 202 participants using a slightly altered version of the experi-

ment. We will refer to these two versions as Condition A and Condition B. Of the nine participants removed

from the study, six in Condition A reported that they were unable to use the highlighting functionality

in their web browser and three in Condition B indicated they were familiar with the experiment material

(despite having indicated no familiarity in advance of the experiment).

2.2 Materials

Three passages were selected from the Openstax Biology textbook (Rye, Wise, Jurukovski, Desaix, &

Avissar, 2016). Biology was used as a domain for several reasons. First, the foundations of biology are a set

of concepts and facts upon which scientific understanding is built; improving retention of these fundamental

concepts and facts is critical to mastery of the field. Second, the Openstax biology textbook has been widely

adopted, and we hope to build on the current study to a follow-up study using actual students in college

level courses. The choice of text is likely not critical: Dunlosky et al. (2013) note that a variety of content

domains have been used to study highlighting, from aerodynamics to ancient Greek schools, and the pattern

of results has been similar regardless of the domain.

The passages were chosen with the expectation that they could be understood by a college-aged reader

with no background in biology. The three passages concern the topic of sterilization: one serving as an

introduction, one discussing procedures, and the last summarizing commercial uses. The passages were

shown in this order for all participants. Twelve factual quiz questions were generated by turning specific

sentences from the passages into fill-in-the-blank (hereafter, FIB) questions. Three questions are drawn from

the first passage, four from the second passage, and five from the final passage. These twelve questions were

transformed into twelve additional multiple choice (hereafter, MC ) questions, each question comprised of

the correct response and three lures as alternatives.
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In scoring, all questions had equal weighting, and we computed a normalized quiz score in the range 0–1

reflecting the probability of a correct answer. For judging FIB response correctness, a liberal criterion was

used: a response is considered correct if the edit distance between the actual and correct responses is less

than 25% of the length of the correct response.

2.3 Procedure

The experiment is divided into four phases: instructions, reading, review, and quiz.

In the instruction phase, participants were given the structure of the experiment, the makeup of the quiz,

and were encouraged to highlight by being told that the highlights would be available during the review

phase. Participants were required to maintain focus on the experiment window, because Amazon Mechanical

Turk workers tend to multitask. In Condition A, participation was terminated if the experiment window

defocused twice. Because some applications running on the participants’ computer could accidentally defocus

the window, in condition B we eliminated the termination constraint and replaced it with a requirement that

the experiment window be full screen to minimize distractions. In Condition A, we did not screen participants

to inquire about their background in biology, but in Condition B, we asked participants if they had taken a

college-level biology course in the previous three years and to not participate in the experiment if they had.

To ensure that participants were able to anticipate the nature of the text and questions, in Condition B we

added a sample paragraph and question to the instructions.

In the reading phase, participants were presented with the three passages sequentially. In Condition A

each passage was on the screen for five minutes, in Condition B each passage was displayed for six minutes; the

increase in time between Conditions was to alleviate participant concerns of feeling rushed during the reading

of the more technical passage as indicated by emails detailing these concerns. During the reading phase,

participants were allowed to highlight text by selecting one or more words using the mouse. Highlighting a

portion of a word would cause the full word to be highlighted. Participants could unhighlight by selecting a

previously highlighted sequence of words. If the selected text captures any portion of an existing highlight

but extends beyond it, the existing highlight is expanded to include the new selection. A single selection of

the text may highlight more than one sentence at a time, but is not allowed to cross paragraph boundaries.
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In the review phase, participants were presented with the same three passages sequentially, displayed along

with any highlights made during the reading phase, each passage on the screen for one minute. Additional

highlights were not allowed during the review phase.

During the reading and review phases, a timer at the top of the screen indicated time remaining for the

current passage. After the timer expired, the screen was cleared and a message was displayed describing the

next step of the experiment. Throughout the course of the experiment, a progress bar was displayed at the

bottom of the screen that indicated the proportion of the experiment completed.

In the quiz phase, participants first answered the 12 FIB questions followed by the 12 MC questions.

Questions were randomized within question type, as determined by the Condition. In Condition A, the order

was randomized for each participant. In Condition B, questions were blocked by passage, maintaining the

order in which the passages were read, but randomized within block. (The reason for blocking questions was

to better control the time between reading of the passage and the quiz.) At the end of the quiz phase, we

asked participants in Condition B whether in retrospect the material was familiar to them. Three participants

were eliminated due to their reported familiarity with the material. In Condition B, we also asked several

questions relating to the participants’ perceived effectiveness of highlighting.

3 Results

Overall, participants correctly answered 35% of fill-in-the blank (FIB) questions and 64% of multiple

choice (MC) questions. Answering the FIB version of a question boosted the accuracy of the MC version

of the questions to 83% (Table 1). In the three sections that follow, we (1) perform traditional hypothesis

testing to explore the relationship between summary statistics of the highlights and quiz score, (2) construct

models that use the specific pattern of highlights to predict quiz score, and (3) construct models that use

the specific pattern of highlights in two passages to predicts highlights in a third passage.

3.1 Hypothesis Testing

We conducted a two-way ANOVA to compare the effect of experiment Condition (A versus B) and passage

number (1, 2, 3) on quiz score, with participants as the random factor. A main effect of experiment Condition
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Table 1: Distribution of response correctness on multiple choice (MC) and fill-in-the-blank (FIB) versions of

a question.

MC Incorrect MC Correct

FIB Incorrect 0.30 0.35

FIB Correct 0.06 0.29

is observed (F (1, 389) = 7.38, p = .007), with participants in Condition A performing better (50.8% versus

46.3%); we conjecture the reason is that Condition B ensures there is some lag between reviewing a passage

and being asked a question on that passage, preventing access to quiz answers from working memory. A

main effect of passage number is observed (F (2, 778) = 53.6, p < .001), with the questions associated with

one passage being harder than those of the other two (42.0% versus 52.2% versus 51.3%). Importantly, no

interaction is observed between version and passage (F (2, 778) = 1.45, p = .24); therefore in all subsequent

analyses, we combine data from the two Conditions.

We next examine the relationship between summary statistics of highlighting and overall quiz perfor-

mance. Fig. 1 shows a scatter plot of the proportion of sentences highlighted and the normalized quiz score,

with each point in the plot corresponding to a single participant. As shown along the top margin, the

proportion of sentences highlighted appears to be a mixture of a unimodal distribution and an impulse func-

tion at 0 (individuals who did not highlight). The normalized quiz score, shown along the right margin, is

unimodal with a mean of 0.49. Although the scatter plot suggests no strong functional relationship between

the amount of text highlighted and quiz performance, the correlation coefficient is 0.17 (p < 0.001). This

correlation drops to 0.079 (p = 0.15) when participants who did not highlight are removed from the analysis.

Because each question in our quiz is based on a specific sentence in the text passages, we can define

the critical sentence required to answer a given quiz question. Following Yue et al. (2015), we investigated

whether highlighting the critical sentence is related to performance on the corresponding quiz question. Yue

et al. calculated a highlighting efficiency score for each participant, defined as the ratio of highlighted critical

sentences to the total number of highlighted sentences. The correlation between highlighting efficiency and

the normalized quiz score is 0.12 (p = 0.028). Thus, neither the absolute nor relative number of highlights
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is a robust predictor of quiz performance.

Turning to an analysis of specific quiz questions, we examine the relationship between whether or not

a critical sentence is highlighted and whether or not the corresponding question is answered correctly. An-

alyzing the FIB and MC questions separately, a two-tailed matched-sample t-test with participants as the

random factor indicates accuracy is significantly higher for individuals who highlight the critical sentence

than for those who did not, both for FIB questions (37.3% versus 29.8%, t(296) = 3.23, p = .001, d = 0.27)

and MC questions (68.2% versus 62.0%, t(296) = 4.14, p < 0.001, d = 0.70). Participants who highlighted

none or all of the critical sentences had to be excluded from this analysis.

At the end of the experiment, participants in condition B were asked ”Do you consider highlighting an

effective study strategy?” The proportion of words in the text highlighted by participants was related to

their response as indicated by a one-way ANOVA: those responding no, sometimes, and yes highlighted an

average proportion of 0.21 (SE=0.04), 0.31 (SE=0.02), and 0.32 (SE=0.04) words, respectively (F (2, 198) =

3.24, p = 0.041), consistent with their beliefs about highlighting effectiveness. More surprisingly, their beliefs

were also correlated with quiz score: those responding no, sometimes, and yes attained quiz scores of 0.36

(SE=0.03), 0.44 (SE=0.02), and 0.46 (SE=0.02), respectively (F (2, 198) = 4.93, p = 0.0081). This positive

relationship between survey responses and quiz score contrasts with a negative relationship observed by

Yue et al. (2015). Their experiment was remarkably similar in structure to ours, and differed primarily in

that their retention intervals were a week long, they collected paper highlights, and their participants were

college undergraduates, not Amazon Mechanical Turk workers. Perhaps the difference in results is due to

the populations: whereas college undergraduates have recent experience highlighting, Amazon Mechanical

Turk workers may not.

3.2 Predicting Quiz Score

We next examine the specific patterns of highlights and its relationship to performance. There is diversity

in the manner in which individuals highlight, as illustrated in Fig. 2, which shows highlights produced by

three participants for one specific paragraph of text. Highlights demarcate blocks of text ranging from single

words to phrases to complete sentences. To distinguish among these highlighting patterns, we must specify
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Figure 1: Scatter plot of proportion of sentences highlighted versus normalized quiz score for each participant.

The marginal distributions are shown above and to the right of the scatter plot.

The process of disinfection inactivates most microbes on the surface of a fomite by using antimicrobial 
chemicals or heat. Because some microbes remain, the disinfected item is not considered sterile. Ideally, 
disinfectants should be fast acting, stable, easy to prepare, inexpensive, and easy to use. An example of a 
natural disinfectant is vinegar; its acidity kills most microbes. Chemical disinfectants, such as chlorine bleach or 
products containing chlorine, are used to clean nonliving surfaces such as laboratory benches, clinical 
surfaces, and bathroom sinks. Typical disinfection does not lead to sterilization because endospores tend to 
survive even when all vegetative cells have been killed. 
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Figure 2: A paragraph of text as highlighted by three randomly selected participants.
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One food sterilization protocol, commercial sterilization, uses heat at a temperature low enough to preserve 
food quality but high enough to destroy common pathogens responsible for food poisoning, such as 
Clostridium botulinum. Because Clostridium botulinum and its endospores are commonly found in soil, they 
may easily contaminate crops during harvesting, and these endospores can later germinate within the 
anaerobic environment once foods are canned. Metal cans of food contaminated with Clostridium botulinum 
will bulge due to the microbe's production of gases; contaminated jars of food typically bulge at the metal lid. 
To eliminate the risk for Clostridium botulinum contamination, commercial food-canning protocols are designed 
with a large margin of error. They assume an impossibly large population of endospores (1012 per can) and 
aim to reduce this population to 1 endospore per can to ensure the safety of canned foods. For example, low- 
and medium-acid foods are heated to 121 degrees celsius for a minimum of 2 minutes and 52 seconds, which 
is the time it would take to reduce a population of 1012 endospores per can down to 1 endospore at this 
temperature. Even  so, commercial sterilization does not eliminate the presence of all microbes; rather, it 
targets those pathogens that cause spoilage and foodborne diseases, while allowing many nonpathogenic 
organisms to survive. Therefore, "sterilization" is somewhat of a misnomer in this context, and commercial 
sterilization may be more accurately described as “quasi-sterilization”. 
 
 

Figure 3: Example of the fragment representation where the alternating colors signify the different fragments.

an encoding of the highlighting data.

3.2.1 Highlight Encodings

In all analyses, we ignore the time course and sequence of text selections and deletions that the participant

made. Instead, we consider only the final highlighted state of each passage. We can parse the highlights at

the granularity of a sentence and count a sentence as highlighted if any word in the sentence is highlighted.

(We define sentences as delineated by periods, exclamation marks, and question marks.) We can also parse

highlights at the granularity of individual words. Intermediate between sentences and words is the level of

fragments, which are phrases delineated by commas, semicolons, and colons. We subjectively excluded some

commas as segment boundaries, e.g., commas that delineate lists of items. Fig. 3 gives an example of our

fragment partitioning. A fragment is counted as highlighted if any word in the fragment is highlighted. The

three passages contain a total of 2291 word tokens, 235 fragments, and 117 sentences.

The highlighting pattern of each participant can be described as a binary feature vector whose length

depends on the lexical elements. The high-dimensional word-level representation captures the exact pattern

of highlights, but using this representation in a regression model introduces many free parameters; the

low-dimensional sentence-level representation loses some detail in an individual’s highlighting pattern but

supports a more compact regression model.

Our intermediate-level fragment representation was intended as a compromise, capturing detail while
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not requiring too many free parameters. In contrast to our manually segmented fragment representation,

we explored two additional intermediate-level representations, both derived automatically: logistic princi-

pal components analysis (LPCA) (Collins, Dasgupta, & Schapire, 2002; Lee, Huang, & Hu, 2010) and a

traditional natural-language processing methodology for segmentation into fragments.

LPCA is an unsupervised method for binary data. Traditional principal components analysis (PCA)

seeks to find a small set of orthogonal components that capture the variance in the original data. LPCA

primarily differs from PCA in that observations are assumed to be drawn from a Bernoulli distribution rather

than a Gaussian. LPCA was applied to the word representation to reduce its dimensionality from 2291 to

120. The value 120 was chosen to be in line with the dimensionality of the sentence representation, and it

also preserved 99% of the variance in the data. Using the algorithm variant of Landgraf and Lee (2015), we

performed five-fold cross validation to tune a hyperparameter.2

We also considered a representation based on a traditional natural-language processing methodology,

constituency parsing, which breaks a sentence into its constituents or chunks, as in the following example

(Abney, 1991):

[I begin] [with an intuition]: [when I read] [a sentence], [I read it] [a chunk] [at a time].

Although one could construct a highlighting representation based on such constituents, it would be much

higher dimensionality than our fragment representation. To reduce the dimensionality, we used the following

procedure. First, we generated constituency parse trees for each sentence in the corpus using the Stanford

CoreNLP parser (Manning et al., 2014). Then, we descended the tree from the root until we identified a

depth at which all the words in a sentence were contained in two or more subtrees. We created a feature

for each subtree, yielding 340 features that broke up the passages in a manner similar to that achieved by

the fragment representation. However, the performance of the automatically derived subtree representation

yielded results that were significantly worse than those from the fragment representation. We thus excluded

it from our representation. We also explored a representation based on dependency parse trees using the

Stanford CoreNLP parser (Manning et al., 2014), but it performed even worse.

2The hyperparameter, m, restricted the logit of the observed probability to lie in [−m,+m] rather than [−∞,+∞]. We

considered m ∈ [1, 10]. Cross validation selected m = 7.
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3.2.2 Quiz Prediction Models

We now turn to the prediction of quiz performance given an individual’s highlights, as represented by one

of the schemes described in the previous section. Following a long tradition in the educational data mining

community, we use feature-based regression models. Feature-based regression models include performance

factor analysis (PFA) (Pavlik, Cen, & Koedinger, 2009) and deep knowledge tracing (Piech et al., 2015); these

two approaches differ in that features are hand-crafted in the former and learned from the data in the latter.

In addition to features that encode past history of student performance, some models have incorporated side

information, i.e., information not directly related to the dependent measure being predicted. Examples of

side information include viewing times and requests for hints (e.g., R. S. Baker, Corbett, & Aleven, 2008;

Zhang, Xiong, Zhao, Botelho, & Heffernan, 2017). Highlighting patterns constitute a novel source of side

information. In addition to observable, some models, such as PFA, include latent features—features inferred

from but not explicit in the data. The classic latent-feature model in student modeling, item-response theory

(F. B. Baker & Kim, 2004), forms the backbone of our regression approach. Item-response theory combines

side information and latent features into a single interpretable model, which will allow us to discern how

much leverage highlights give in predicting quiz performance.

To formalize, let nP denote the number of participants given a test with nI items, with ypi = 1 if the

response of participant p to item i is correct. The one-parameter logistic (1PL) variant of item-response

theory makes the prediction:

Pr(ypi = 1) = logistic(αp − δi),

where αp denotes the latent ability of individual p, δi denotes the latent difficulty of question i.

To this basic model, we incorporated several additional variables. First, because we tested participants

in two slightly different conditions of the experiment (explained earlier), we incorporated a binary variable,

ep, indicating the experimental condition participant p was assigned to, with values 0 and 1. Second, since

we are predicting responses to both MC and FIB variants of a question, we could treat the two sets as

independent, however one would expect MC and FIB variants of a question to have correlated accuracy.

Still, one would also expect MC variants to be easier. To capture both of these expectations, for each of the

i ∈ {1, ..., 24} questions, we separately encoded binary question format (MC versus FIB), fi, and question
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content (1–12), ci. This encoding results in an additive model for format and content:

Pr(ypi = 1) = logistic(αp − δci + νfi + βep), (1)

where νf and βe are free parameters associated with question format f and experimental condition e,

respectively. We refer to this model as the baseline, because it incorporates no information about participant

highlighting.

Rather than estimating model parameters {α, δ,ν,β} directly, we perform hierarchical Bayesian inference

by placing priors on these parameters and estimating hyperparameters of the prior distributions. We specify

priors as: αp ∼ N(µα, σα), δc ∼ N(µδ, σδ), νf ∼ N(0, 2.5), and βe ∼ N(0, 2.5). To avoid identifiablility

issues, νf and βe were used to identify the model (see Bafumi, Gelman, Park, and Kaplan, 2005, for advice on

dealing with model identification). All of the feature-based regression models were fit using STAN (Carpenter

et al., 2017). We sample four MCMC chains each having 2500 samples3, and from each chain we remove the

first half of samples as burn in. The remaining samples are then averaged together across the four chains to

obtain a prediction.

Given our baseline model, it is simple to incorporate highlights and associated parameters. We augment

the model by incorporating a highlighting representation vector, hp for participant p and an associated

highlight coefficient vector ωci , yielding:

Pr(ypi = 1) = logistic(αp − δci + νfi + βep + ωcih
T
p ). (2)

The hyperparameters of the baseline model are re-used with priors on the highlighting coefficients being

ωci ∼ N(µω, σω).

3.2.3 Performance Metrics

Following the guidance of Pelánek (2015), we evaluate models with two performance measures: Area under

the ROC curve (AUC) and prediction accuracy. AUC measures how well a model discriminates between

classes. AUC typically lies in the range between 0.5 (no ability to discriminate correct from incorrect) to 1.0

3The number of iterations was chosen based on models with the largest number of features—and hyperparameters—while

maintaining convergence as determined by the split R̂ statistic and Bayesian fraction of missing information (Betancourt, 2017).
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Figure 4: Mean highlighting weights, ωci , for models trained on the sentence representation. The weights

are normalized by question such that the magnitude of the largest weight is 1.0. The black squares indicate

which highlight features were used to generate each quiz question.

(perfect discrimination). AUC was computed by merging all the predictions in the evaluation set. Prediction

accuracy is expressed in terms of proportion model predictions that match the student outcome. We use a

threshold of 0.5 on the model output probability to distinguish predictions of student correctness and error.

Using these two metrics, we perform cross validation to assess the value of highlights on quiz-score

prediction. As with any modeling problem involving participants answering questions, we have multiple

options for how to perform the cross validation splits: we can hold out participants, hold out questions, or

hold out participant-questions (i.e., hold out a random subset of questions from each participant). Holding

out participants or questions allows us to anticipate how our models will fare for new participants and

questions, respectively. In this case the associated parameters, αp and δci respectively, in Equation 2 are

uninformative, the sampled parameter values obtained during training are unchanged during the prediction

process. Holding out participant-questions corresponds to the scenario where we have response data from

previous participants, and also limited responses from a participant whose later responses we wish to predict

(Gantner, Drumond, Freudenthaler, Rendle, & Schmidt-Thieme, 2010; Schein, Popescul, Ungar, & Pennock,

2002). We use 10-fold splits for the held out participants and participant-questions, and 12-fold splits for

the held out questions.
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3.2.4 Simulation Results

Consider the model in Equation 2 with a sentence representation of highlights. For each quiz question

q, this model has a coefficient vector, ωq, that indicates whether highlighting specific sentences increases

or decreases the probability of correctly answering question q. Fig. 4 depicts these coefficients via an array

with one row per question and one column per sentence in the text. The coloring indicates the sign and

magnitude of the coefficient for the highlighting of a given sentence on a given question. The coefficients

are normalized by question such that the magnitude of the largest is 1.0. These coefficients are obtained by

averaging across cross-validation folds of models trained on subsets of participants. In each row, the black

square indicates the critical sentence in the text that is sufficient to answer the corresponding quiz question.

Notably, the coefficients on the critical sentences are not the largest in each row, indicating that the model

has identified stronger regularities than the straightforward rule that highlighting a sentence increases the

probability of correctly answering questions about that sentence. The coefficient matrix seems to validate our

modeling approach over previous analyses that have focused on whether the critical sentence is highlighted

(Fowler & Barker, 1974). Although the coefficients reflect statistical regularities in our data set, it is of course

possible that they are not predictive of held out data. To answer this question, we perform cross-validation.

Fig. 5 shows cross validation performance of models trained on the four different highlight representations

(see Section 3.2.1). The left graph shows the model’s ability to discriminate correct from incorrect quiz

responses, quantified by AUC, and the right graph shows prediction accuracy, quantified by proportion

correct. The horizontal orange line indicates the performance of the baseline model (Equation 1) which does

not utilize highlighting features. Shading represents ±1 standard error of the mean.4

The four representations are ordered by granularity, i.e., the number of features in the representation.

The finer-grain representations on the right, which indicate word or fragment highlights, outperform the

coarser-grain representations on the left, which indicate sentence highlights or a reduced-dimensionality

principal-components representation. One would expect this result with sufficient data because the finer-

4The standard errors have been adjusted to remove variability arising from the random factor—the data split—while retaining

variability across data splits in the relative performance of highlighting representations. We use the procedure suggested by

Masson and Loftus, 2003, which results in corrected error bars whose overlap indicates whether performance differences are

statistically meaningful.
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grain representations support more complex models, but we were uncertain a priori whether the number of

participants in our study would be sufficient to justify the more complex models.

In Fig. 5, performance is evaluated with held out participant-questions. The models thus have some

information about each participant and some information about each question and simply need to fill in the

missing cells. We consider this scenario the most realistic in our educational context because in a typical

course, we will have data from the students who have taken the course previously, providing information

about all questions, and as the course progresses, we will accumulate data from the particular student

whose performance we wish to predict. Nonetheless, we can conduct cross validation studies holding out

participants and holding out questions.

Prediction on unseen participants (Fig. 6) yields a pattern of results similar to that with unseen participant-

questions. There is a clear benefit for the fragment- and word-highlight models, indicating that the pattern

of highlights that predicts quiz performance is not participant-specific. This finding is encouraging because

it implies that even without prior data on a participant, we can use highlighting to predict memory for text

material. Consequently, a participant’s comprehension could be assessed online as they first engage with a

text.

Prediction on unseen questions (Fig. 7) does not benefit from any of the highlighting representations,

indicating that the pattern of highlighting attended to by the model is specific to the questions used for

training the model. Although successful transfer to new questions would be ideal, instructors often re-use

a set of (factual) questions from year to year, and these questions underlie the core material the instructor

wishes students to master. One possible approach to obtaining generalization across questions would be to

encode questions not by their unique index but by semantic features, allowing for a natural similarity metric

between questions and between a question and the text.

The result on unseen questions suggests that the coefficients on the highlight features do not transfer to

questions outside the training set. Consequently, one might suppose models would be even more accurate if

the highlight coefficients, ωci , were not tied with hyperpriors. (The hyperpriors impose a weak constraint

among coefficients for different questions.) Indeed, when we remove the hyperpriors on per-question coef-

ficients, we find a small improvement in model predictions. For example, on the fragment representation
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Figure 5: Results for the hold out participant-questions cross validation split using the feature-based regres-

sion model for the task of predicting quiz score. The orange line is the baseline result.

of highlights and held out participants, AUC rises from 0.791 (SE 0.0012) to 0.808 (SE 0.0016); and PA

rises from 0.728 (SE 0.0012) to 0.735 (SE 0.0023). A similar result was found on the word representation of

highlights and held out participants, AUC rises from 0.791 (SE 0.0011) to 0.808 (SE 0.0018); and PA rises

from 0.728 (SE 0.0016) to 0.738 (SE 0.0023).

3.3 Predicting Pattern of Highlighting

Having established that highlights have value in predicting quiz performance, we turn to a related ques-

tion: whether an individual’s highlights in one section of the text help to predict their highlights in other

sections. Highlights indicate concepts that students believe are key, but they are also a proxy for what a

student finds interesting and worthy of noting. Predicting highlights might therefore be useful for making

recommendations to students concerning additional readings. Further, discrepancies between predicted and

actual highlights could possibly serve as an indication of mind wandering or other failures to engage with

the material, which in turn could trigger educational interventions.

For this investigation, we explore matrix factorization methods. Matrix factorization is a popular method

for collaborative filtering—problems involving predicting missing features of one individual, based on popula-

tion data. Examples of collaborative filtering problems include movie and product recommendations (Koren,
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Figure 6: Results for the hold out participants cross validation split using the feature-based regression model

for the task of predicting quiz score. The orange line is the baseline result.
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Figure 7: Results for the hold out questions cross validation split using the feature-based regression model

for the task of predicting quiz score. The orange line is the baseline result.
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Bell, & Volinsky, 2009); in these problems, the data set is a matrix of scores whose cells contain the rating

of a given individual for a given item. In our case, the matrix, H, is binary, where cell hpi indicates whether

participant p has highlighted text segment i. Matrix factorization methods decompose the matrix into a

latent feature vector for each individual and a latent feature vector for each segment, such that the value

in a matrix cell depends on the compatibility of the corresponding latent feature vectors, which in essence

assesses whether a given type of student tends to be interested enough to highlight a given bit of material.

We use SPARFA-M (Lan, Waters, Studer, & Baraniuk, 2014) as the algorithm for matrix factorization.

SPARFA-M infers k latent concepts that are used to characterize each segment of text as well as each

participant’s interests. Every text segment i is described as a k-element vector, wi, whose elements represent

the contribution of each latent concept to the segment. Each participant p is described by a k-element vector,

cp, whose elements represent the participant’s propensity to highlight each of the latent concepts. SPARFA-

M models boolean random variables Xpi ∈ {0, 1} that predict whether participant p has highlighted text

segment i, where

Xpi ∼ Bernoulli(logistic(wT
i cp + µi))

and µi represents the intrinsic propensity to highlight segment i. Following Lan et al. (2014), we choose

k = 5; as previous work also found, negligible increases in performance are obtained with larger values of k,

and they incur an increased computational cost.

According to the model, the probability of an observed highlight hpi is

Pr(Xpi = hpi) = logistic(wT
i cp + µi)

hpi + (1− logistic(wT
i cp + µi))

1−hpi . (3)

Given the highlight observation matrixH, SPARFA-M performs maximum likelihood estimation with respect

to W = [w1 w2 ...], C = [c1 c2 ...], and µ = [µ1 µ2 ...]. Sparsity constraints are incorporated into the

estimation problem, yielding the regularized log likelihood:

L(W ,C,µ) =
∑
i,p

lnPr(hpi | W ,C,µ)− λ1
∑
i

||wi||1 −
λ2
2

∑
i

||wi||22 −
λ3
2
||C||2F ,

where λ1, λ2, and λ3 are regularization coefficients, whose values are selected using 3-fold cross validation on

the training set. To prevent overfitting and improve identifiability, SPARFA-M has three key assumptions:
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Table 2: Predictions of highlights in one passage given the highlights in the other two passages.

AUC Accuracy

SPARFA-M 0.765 (0.0101) 0.742 (0.00788)

Baseline 0.683 (0.00754) 0.730 (0.00647)

(1) the number of latent concepts k is small relative to the number of learners and questions, (2) W is sparse,

and (3) the entries of W are non-negative. Optimization is performed via the FISTA framework (Beck &

Teboulle, 2009).

3.3.1 Simulation Results

To assess highlight prediction, we performed ten-fold cross validation to split participants into training

and evaluation sets. All highlighting data from participants in the training set were used for model training.

For each participant in the evaluation set, we predict the word representation of the highlights in one passage

conditioned on the highlights in the remaining two passages. The passage used for prediction was chosen at

random; the other two passages provide context for the prediction. We compare SPARFA-M to a baseline

model whose prediction is simply the mean proportion of participants in the training set who highlight a

given feature (word).

As summarized in Table 2, SPARFA-M outperforms the baseline model on predicting highlighting pat-

terns, indicating that the highlights a participant makes in several passages can be useful for determining

deviations from population behavior in a third passage. These results are for the word representation of

highlights. Representations based on sentences, fragments, and LPCA obtain similar performance.
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Figure 8: Bar graphs of the mean word weighting in the given concept for each of the three passages taken

from one fold of the cross validation.

The discrepancy between AUC and prediction accuracy can be explained by the fact that accuracy is

sensitive to the decision criterion, and the two models are operating with different criteria. To illustrate

this fact, we changed the decision criterion for prediction accuracy from 0.5 to 0.2, SPARFA-M obtained an

accuracy of 0.688 (SEM 0.00708) which handily beat the baseline with an accuracy of 0.506 (SEM 0.00686).

Because AUC provides a measure of discriminability insensitive to the decision criterion, we argue that AUC

is more meaningful as a performance measure for this task which is echoed in the literature (Menon & Elkan,

2011).

Figure 8 provides some insight into SPARFA-M’s use of the latent concepts to predict the missing

highlights. For each of the three passages and each of the five latent concepts, we computed the mean

SPARFA-M word weighting for the given passage and concept.5 The Figure reveals that each passage has a

strongly associated concept, and that concept is not associated with the other two passages. Thus, SPARFA-

M has achieved a sort of segmentation by passage. We also examined the student × concept matrix, but we

failed to identify any visualization or clustering that offered insight into the model’s latent representations.

5Because the concept indices are arbitrary, the indices shift from one fold of cross validation to the next. Thus, we show

only one fold in the visualization. Others are similar in their interpretation.
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4 General Discussion

We described an experiment in which participants read three passages from a biology textbook and were

allowed to highlight as they read. Following the initial reading, participants had the opportunity to review

the passages with highlights. Then they took a quiz generated from the factual material from the text. We

found that an individual’s idiosyncratic pattern of highlights in a given section of text helps to predict the

performance on quiz questions from this section, as well as to predict what words will be highlighted in other

sections.

The improvement in prediction metrics that result from using highlighting data is small in magnitude

but reliable. This finding is not surprising: we are using the highlighting choices as a proxy for the complex

interpretative and memory processes a reader undergoes when exposed to novel material. Highlights provide

a peek into these processes, but obviously not a complete record. As in many other big-data scenarios

involving human learning and education, the hope is that many weak predictors can be identified and then

combined to obtain stronger predictions. Whereas data collection from many sources requires effort or

inconvenience on the part of the learner (e.g., surveys, EEG or skin response recording, gaze tracking),

highlighting is natural to many students and thus imposes little burden. Fortunately, digital textbooks

provide other lightweight data sources, including page reading times, scrolling behavior, electronic notes and

questions, and the geolocation and time at which an individual engages with the material.

Although the focus of our work is on whether highlights are useful as a data source for modeling student

comprehension, our data provide some evidence concerning theoretical issues, in particular, whether high-

lighting might engage a deeper form of processing of the material. We found a small but reliable benefit

in performance for participants who highlight over those who do not. And we found that individuals who

were more selective in their highlights—as measured by highlighting efficiency—showed a marginal benefit

in performance. However, it is impossible to determine whether highlighting choices are the causal factor or

merely correlated with a latent ability factor.

A limitation of this study is the short span and limited content of our experiment. Only three passages

are studied for under 30 minutes total, and the lag between study and test is fairly brief. It is possible that

the benefit of highlighting is fleeting: a student may remember the highlights they made 5 or 10 minutes
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earlier and may thus benefit from highlighting, but this benefit diminishes if the test is delayed by a week.

We acknowledge this limitation, but argue that indirect benefits of highlighting may occur. For example, the

external memory function of highlighting may lead to more consideration given to the highlighted paragraphs

on delayed review. And even a short-lived memory boost from highlighting may facilitate understanding of

subsequently learned material: to scaffold one concept upon another, the recently learned concepts must be

accessible.

From a data mining perspective, the short span and limited content of our experiment imposes a lower

bound on what inferences may be drawn from highlights. Consider the data that could be collected from an

online college course involving the study of hundreds of pages of text over the span of a semester. Online

learning platforms, such as Hypothes.is or Openstax, offer the opportunity to observe student interactions

with a broader range of content over longer periods of time. The richer the data source, the more likely

statistical methods are to find higher-order regularities. This fact is in large part the explanation for the

success of deep learning over the past decade.

The modeling approach we have taken in this article will need to be extended as richer and larger data

sources are obtained. First, we will need to advance from the simple regression and latent-variable models

examined here to deep-learning models, whose complexity will be warranted given sufficient data. Second, we

will need to give more consideration to the representation of highlights. Our passages were short enough that

we could encode highlights by the specific position in the text they occupied. This encoding allowed us to

sidestep issues of natural -language content. For a larger (and evolving) text base, position-specific encodings

will infeasible and would sacrifice the information content of the text itself. Consequently, we expect word

and sentence embedding methods (Devlin, Chang, Lee, & Toutanova, 2018; Pennington, Socher, & Manning,

2014) to be useful as we scale up the approach. This approach has the additional benefit of being robust to

updates of a text; whereas traditional publishing methods produce infrequent updates, web-based publishing

permits rapid and continual updating, and it is therefore prudent to merge highlighting data from different

versions of a publication.

To the extent that highlights are reliably predictive—of either learning or student interests—they might

be leveraged to improve electronic textbooks in several ways.
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• If highlights provide a reliable indicator that a student is having difficulty comprehending or remem-

bering material, immediate interventions might be performed to address the situation.

• Students with highlighting patterns that predict poor performance or that do not match highlighting

patterns of an instructor might be offered training to improve highlighting strategies (Leutner et al.,

2007). Indeed, Miyatsu et al. (2018) and Yue et al. (2015) argue that training students to highlight

appropriately is critical to obtaining value from the study strategy, and showing students highlights

from an informed instructor have proven beneficial (Hartley et al., 1980; Lorch & Klusewitz, 1995; Nist

& Hogrebe, 1987). Following training, data-driven approaches might be used to assess adherence to

a strategy. Even if highlights from an informed instructor are not available, one could evaluate the

success of a pure data-driven approach in which the predictive model is inverted to determine patterns

predictive of best performance.

• Highlights predict not only performance, but also student focus and interest. To the extent that high-

lights can predict what will be highlighted in the future, recommender systems might be constructed

to guide students to material likely to be of interest. Kintsch (1980) proposed a distinction between

cognitive and emotional interests. Whereas cognitive interests pertain to the key substantive content

of a text, emotional interests capture attention even if they are peripheral to the main lessons. Readers

are likely to motivated and energized by emotional interests (Harp & Mayer, 1997). One intriguing

direction for future research is to tease apart highlights that reflect these distinct interests. Another

possibility is to cluster students by the latent interests manifested in their highlighting patterns, with

the potential for forming work groups that either share interests or have complementary interests.

It might be considered ambitious to imagine that the modest predictive value we observe for highlights

would be sufficient to reliably target students with an intervention. However, the subtle patterns we ob-

serve might provide sufficient evidence for a skilled human instructor to determine whether and what sort

of intervention might benefit the student. And automatic interventions, even if poorly targeted, will provide

additional feedback useful for improving comprehension models. For instance, if a student is given an imme-

diate question to bolster their comprehension, their answer provides a stronger indication of comprehension

than does a delayed quiz.

29



In conclusion, we have shown that highlights are a viable data source for inferring the cognitive state of

the reader. If we are able to obtain some signal in a laboratory experiment, we are optimistic that an even

stronger signal may be obtained in an authentic learning scenario. Our current research is moving from the

laboratory to an electronic textbook platform. Our future work will also investigate whether other types

of annotations, such as notes in the margin, and implicit measures, such as page dwell times and scrolling

behavior, can also be of assistance in the prediction of retention, comprehension, and engagement.
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