
Syllabus for CSCI 3104: Algorithms
Summer 2018

Section 300 Section 310
Instructor Adam Winchell Josiah Buxton

Lectures Monday-Friday Monday-Friday
2:30–3:50pm in ECCR 135 2:30–3:50pm in TBA

Office ECES 1B16 ECES 1B16
Email adam.winchell@colorado.edu josiah.buxton@colorado.edu

Office Hours TBA TBA
or by appointment or by appointment

Prerequisites: Data structures (CSCI 2270), Discrete structures (CSCI 2824), Calculus I
& II, plus the ability to program in a language such as C, C++, Python, or Java

Required Text: Introduction to Algorithms (3rd ed.), by Cormen et al. (a.k.a. “CLRS”)

Course Objectives: In this course, students will

• become familiar with “standard” algorithms for abstract problem solving;

• learn how to mathematically prove properties of algorithms, including their correctness;

• analyze the time and space complexity of algorithms;

• understand the relative merits or demerits of different algorithms in practice;

• adapt and combine algorithms to solve problems that may arise in practice; and,

• learn common strategies in the design of new algorithms for emerging applications.

1



Overview:

• Lectures 4 times a week (M/T/W/Th)
• Weekly recitation section on Friday
• Problem sets throughout the semester (roughly one per week)
• Several problems sets will involve programming problems
• Occasional in-class or online quizzes
• One final exam
• This will be a challenging course; plan accordingly

Schedule

Week 1 Fundamentals of algorithms
Week 1 Time and space complexity
Week 2 Divide & conquer, recurrence relations
Week 2 Efficient data structures
Week 3 Greedy algorithms
Week 3 Dynamic programming
Week 4 Dynamic programming
Week 4 Graph algorithms
Week 5 Graph algorithms
Week 5 Spring break
Week 6 Graph algorithms
Week 6 Problems in P and NP
Week 7 Stable matchings
Week 7 Advanced topics
Week 8 Final exam

Assignments & Deadlines

There will most likely be 7 problem sets
Deadlines and problem sets files can be found on the class Moodle page

Examinations

Final exam: TBA

2



Getting help

• Attend the lectures, attend your recitation section, and come to office hours.
These are provided specifically to help you learn the material. Take advantage of them.

• Use the Piazza forum. For class discussion and Q&A. Rather than emailing ques-
tions to the teaching staff, please post your questions on our Piazza forum.

• Do not abuse email. Do not ask for help with specific parts of the problem sets via
email. If every student in class sent us 1 email a day, and it took only 5 minutes to
respond to each, the course staff would be spending over 20 hours a day just responding
to email. Email should be reserved for high-priority issues only.

Grading
Grades will be assigned as the weighted sum of scores in two areas: problem sets and quizzes
(0.70) and the final exam (0.30).

Letter grades will only be calculated and assigned after the final exam is graded. Prior to
that, only numerical grades will be tracked.

Problem sets
The course staff will evaluate many homework submissions this semester. For this to run
smoothly, we need your help.

• Problem sets will always be due on Thursday, by 11:55pm, via the class Moodle page
No credit for solutions submitted any other way
Late submissions will not be accepted
The lowest 2 problem set grades will be dropped at the end of the semester

• Solutions to mathematical problems should assume a RAM computation model (unless
otherwise specified)

• Some topics will only be covered through the problem sets

• Any reasonable imperative language (C/C++, Java, Python, etc.) may be used to com-
plete the programming problems

• Run-able source code must be included at the end of your solutions file
No credit on programming questions that are unaccompanied by source code

Unless specifically allowed, all parts of all algorithms and data structures must be im-
plemented from scratch (that is, no libraries; if you use Python or another modern

3



language, be sure you are not accidentally invoking non-trivial libraries; garbage col-
lection features and static arrays are okay; “dictionary” data structures are not).
If you are unsure about what counts as “non-trivial,” ask for clarification.

Working in teams

• All problem sets must be completed individually.

• Students are encouraged to form study groups to discuss the problems with each other.

• However, each student must independently write up their own solution—the one they
submit for credit for themselves. Working at a whiteboard or on paper together is fine,
even if you solve the problem that way, but writing up a joint solution is not.

• Examinations must be completed individually.

Intellectual Honesty and Plagiarism

• Intellectual dishonesty or plagiarism of any form, at any level, will not be tolerated.

• Discussing problems with other students is encouraged, but you must list your
collaboration on the page where you give the solution. If you discussed it with 20 other
people, then all 20 names should appear in your solution. If someone was particularly
helpful, say so. Be generous; if you’re not sure whether someone should be included
in your list of collaborators, include them. For discussions in class, in section, or in
office hours, where collecting names is impractical, it’s okay to write something like
“discussions in class.” There is no penalty for discussing problems with other students.

• Copying from any source in any way is strictly forbidden. This includes
both the Web and other students (past or present). If you are unsure about whether
something is permitted, please see me before the assignment is due.

There will be a zero-tolerance policy to violations of this policy. Violators will be
removed from the class, given a grade of F , and reported to the University Honor
Council.

• Write everything in your own words and cite all outside resources. You
are strongly encouraged to use outside resources, but you must write your solutions
yourself. We are not interested in seeing Wikipedia’s or anyone else’s solution. The
only sources you are not required to cite are the textbook and lecture notes, and the

4



prerequisite material (which we assume you know by heart). As a small bonus for
having read the syllabus carefully, I will award some extra credit points on PS1 if you
send me an email containing a photo of a dinosaur (any kind is fine).

Formatting and submitting your work

Rule 0 Moodle rule: All submissions must be made electronically, via the class Moodle page.

Rule 1 One-file rule: Your solutions to the problem set must be a single PDF file (file 1).

Rule 2 Filename rule: Name your file as Lastname-Firstname-MMDD-PSX.pdf

Your Lastname, followed by your Firstname
followed by the 2-digit month and 2-digit day of your birthday MMDD,
followed by the number of the problem set you are submitting solutions for X.

For instance, Winchell-Adam-0701-PS1.pdf

Rule 3 First-page rule: Page 1 of file 1 must include the following information:

– CSCI 3104 Summer 2018

– Problem Set X

– Lastname, Firstname

– MM/DD for your birthday

• Failure to follow Rules 0–3 may result in a loss of credit and/or a delay in evaluation.

Rule 4 Source-code rule: For problem sets with programming portions, you must include
your source code at the end of the file.
No credit for programming questions that lack associated source code.

Rule 5 Figure rule: All figures, graphs, charts, and tables must be labeled correctly.
No credit for figures with unlabeled axes or data series.

• The solution to each numbered problem should start on a fresh page.

• Pages should be numbered in chronological order.

• Solutions must be detailed and clear. The clearer your explanation, the more
likely you are to receive full credit for a correct answer. Detailed advice for achieving
this is included at the end of this document.

5



• Exceptional circumstances: Only in exceptional circumstances, e.g., documented ill-
ness or injury, assignments may be forgiven. Examples of unexceptional circumstances
include registering late, travel for job interviews or conferences or fun, forgetting the
homework deadline, or simply not finishing on time. Final grades will be computed as
if forgiven assignments did not exist; this increases other assignments’ weight.

What to write

• Answer the right question.

• Justify your answer. Unless the problem specifically says otherwise, every homework
problem requires an explanation. Without one, even a perfectly correct solution is
worth nothing. In particular, the sentence “It’s obvious!” is not an explanation—
“obvious” is often a synonym for “false”!

• Answer the question completely. When a problem says to give an algorithm, you
must do several things to receive full credit.

– If necessary, formally restate the problem to make it clear exactly what problem
you are solving.

– Give a concise pseudocode description of your algorithm.

– Explain what your pseudocode does.

– Justify the correctness of your algorithm.

– Describe the correct algorithm.

– Analyze your algorithm’s running time. This may be as simple as “There are
two nested loops from 1 to n, so the running time is O(n2).” Or, it may require
setting up and solving a summation or a recurrence, in which case you will need
to prove your answer is correct.

– Describe the fastest algorithm you can think of, even if the problem does not
include the words “fast” or “efficient.” Fast algorithms are worth more points,
while brute force is usually worth very little. Not every problem will tell you
what to aim for (figuring that out is part of what you’re learning). But, if your
algorithm is incorrect, you won’t receive any points, no matter how fast it is.

Some problems may deviate from these default requirements. For example, you may
be asked to give an algorithm that uses a particular approach, even though another
approach is more efficient. (Answer the right question!) Some problems may ask you
to analyze the space used by your algorithm in addition to the running time.

6



Advice for writing up your solutions

The most important thing you can do is to make it easy for the grading staff to figure
out what you mean within the short time they have to grade your solution. Solutions that
are difficult to read or understand will cause you to lose points (and the graders will be less
sympathetic to your other mistakes).

• Write carefully. You will only be graded on what you write, not what you mean. We
cannot read your mind. If your solution is ambiguous, we will choose the interpretation
that makes the solution wrong.

• Write clearly. If we cannot decipher your answer quickly, we cannot give you credit
for it, even if it is correct. Write your answers clearly. Separate them from other
problems. Box your results. Solve problems in the order they are listed. (If you have
poor handwriting, try typesetting your solutions with LATEX, and don’t submit your
first draft.)

• Explain your solution. Unless the problem specifies it, giving pseudocode alone,
with no accompanying verbal explanation, is insufficient. A complete solution is a
verbal explanation of the algorithm’s generic behavior with supporting pseudocode (or
something functionally equivalent). Pseudocode provides precision where English does
not. English provides context and interpretability where pseudocode does not.

• Give generic solutions, not examples. Solutions that include phrases like “and so
on”, “etc.”, “do this for all X”, or “. . .” will receive no credit. Those phrases indicate
precisely where you should have used iteration, recursion, or induction but did not. If
your solution does not work on every valid input, then it is not a correct solution. A
complete solution explains why there is no such input on which your algorithm fails.

• Make it understandable. Start by describing the key ideas or insights behind your
solution before going into its details. The reader should understand your approach
almost immediately without looking at the proofs or pseudocode. A clearly written
solution that includes all the main ideas but omits some low-level details is worth more
than a complete, correct, detailed, but opaque solution.

• Be succinct. Your solution should be long enough to convey exactly why your answer
is correct, yet short enough to be easily understood.

• Numerical experiments: Some programming problems will require you to conduct
numerical experiments. For instance, to show that an algorithm takes O(n log n) time,

7



you will need to measure the number of atomic operation at multiple values of n, plot
the measured values versus n, and then plot the asymptotic function showing that the
function matches the data. Plotting the average number of operations for a given value
of n will almost always improve your results. To get a good trend, I recommend using
a dozen or so exponentially spaced values of n, e.g., n = {24, 25, . . . , 216, . . .}. When
presenting your results, you must explain your experimental design.

• Source code: Your source code for all programming problems must be included at the
end of your solutions. It should be appropriately commented so that we can understand
what you are doing and why, and it must be run-able – that is, if we try to compile
and run it, it should work as advertised.

Suggestions: Suggestions for improvement are welcome at any time. Any concern about the
course should be brought first to my attention. Further recourse is available through the office
of the Department Chair or one of the Academic Advisors, all accessible on the 7th floor of the
Engineering Center Office Tower.

Honor Code: As members of the CU academic community, we are all bound by the CU Honor
Code. I take the Honor Code very seriously, and I expect that you will, too. Any significant
violation will result in a failing grade for the course and will be reported. Here is the University’s
statement about the matter:

All students of the University of Colorado at Boulder are responsible for knowing and adhering to
the academic integrity policy of this institution. Violations of this policy may include: cheating,
plagiarism, aid of academic dishonesty, fabrication, lying, bribery, and threatening behavior. All in-
cidents of academic misconduct shall be reported to the Honor Code Council (honor@colorado.edu;
303-735-2273). Students who are found to be in violation of the academic integrity policy will be
subject to both academic sanctions from the faculty member and non-academic sanctions (includ-
ing but not limited to university probation, suspension, or expulsion). Other information on the
Honor Code can be found at http://www.colorado.edu/policies/honor.html and at
http://www.colorado.edu/academics/honorcode/

Special Accommodations: If you qualify for accommodations because of a disability, please sub-
mit to your professor a letter from Disability Services in a timely manner (for exam accommodations
provide your letter at least one week prior to the exam) so that your needs can be addressed. Dis-
ability Services determines accommodations based on documented disabilities. Contact Disability
Services at 303-492-8671 or by e-mail at dsinfo@colorado.edu.

If you have a temporary medical condition or injury, see Temporary Injuries under Quick Links at
Disability Services website and discuss your needs with your professor.

8



Campus policy regarding religious observances requires that faculty make every effort to deal reason-
ably and fairly with all students who, because of religious obligations, have conflicts with scheduled
exams, assignments or required attendance. In this class, I will make reasonable efforts to accom-
modate such needs if you notify me of their specific nature by the end of the 3rd week of class. See
full details at http://www.colorado.edu/policies/fac_relig.html

For those enrolled in the distance section 3104-200B: The distance section of this course,
3104-200B, requires the use of the Zoom conferencing tool which is currently not accessible to users
using assistive technology. If you use assistive technology to access the course material, please
contact Prof. Grochow immediately to discuss.

Classroom Behavior: Students and faculty each have responsibility for maintaining an appropri-
ate learning environment. Those who fail to adhere to such behavioral standards may be subject to
discipline. Professional courtesy and sensitivity are especially important with respect to individuals
and topics dealing with differences of race, color, culture, religion, creed, politics, veterans status,
sexual orientation, gender, gender identity and gender expression, age, disability, and nationalities.
Class rosters are provided to the instructor with the student’s legal name. I will gladly honor your
request to address you by an alternate name or gender pronoun. Please advise me of this preference
early in the semester so that I may make appropriate changes to my records. See policies at
http://www.colorado.edu/policies/classbehavior.html and at
http://www.colorado.edu/studentaffairs/judicialaffairs/code.html#student code

Discrimination and Harassment: The University of Colorado at Boulder Discrimination and
Harassment Policy and Procedures, the University of Colorado Sexual Harassment Policy and
Procedures, and the University of Colorado Conflict of Interest in Cases of Amorous Relationships
policy apply to all students, staff, and faculty. Any student, staff, or faculty member who believes
s/he has been the subject of sexual harassment or discrimination or harassment based upon race,
color, national origin, sex, age, disability, creed, religion, sexual orientation, or veteran status should
contact the Office of Discrimination and Harassment (ODH) at 303-492-2127 or the Office of Student
Conduct (OSC) at 303-492-5550. Information about the ODH, the above referenced policies, and
the campus resources available to assist individuals regarding discrimination or harassment can be
obtained at http://www.colorado.edu/odh

9


